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Abstract. We have investigated the distinctive features of the band spectrum, eigenfunctions, and
density of states (DOS) for low-lying quasiparticle excitations in the mixed state of clean d-wave
superconductors(Hc1 � H � Hc2). Our study is based on an approximate analytical solution of
the Bogoliubov–de Gennes equations for quasiparticles with momenta close to gap node directions.
Both the quantized energy spectrum and the spatially averaged residual DOS are shown to depend
fundamentally on the vortex lattice geometry.

1. Introduction

Recently a great deal of attention has been devoted to the nature of the quasiparticle states in
isolated vortices and vortex lattices in superconductors with anisotropic pairing. This problem
is of considerable importance since low-energy quasiparticle excitations impact on various
static and dynamic properties of the mixed state at low temperatures. These investigations
were stimulated by a large number of experiments which provide good evidence for d-wave
symmetry of the order parameter in high-temperature superconductors (see [1] and references
therein). For conventional s-wave superconductors the low-lying quasiparticle states are bound
to the vortex cores as was first predicted by Caroli, de Gennes, and Matricon [2]. For an
isolated vortex line the eigenvalues for these localized states may be written as follows:
Eµ ∼ µ1/(kF ξ), where1 is the gap value far from the vortex axis,ξ is the coherence
length atT = 0, kF is the Fermi momentum, and the angular momentum quantum number
µ is half an odd integer. Despite the number of theoretical and experimental investigations a
clear physical picture of the electronic structure of the mixed state in d-wave systems is still
lacking. In contrast to that for conventional superconductors, the density of states (DOS) at
low energies in d-wave systems is dominated by contributions which come from the regions
far from the vortex cores and depends essentially on the intervortex distanceRv. This unusual
fact is a direct consequence of the vanishing pair potential in the directions of the gap nodes.
As a result, one obtains the specific magnetic field dependence of the DOS at the Fermi
level (see [3–5]), which may be experimentally identified, for instance, in specific heat [6–8]
or scanning tunnelling microscope (STM) [9] measurements. It should also be emphasized
that there is an important difference between the quantization of the energy spectrum in the
mixed state of s- and d-wave superconductors: for s-wave systems the energy quantization and
corresponding localized states exist even in a single isolated vortex line (and they are weakly
influenced by the presence of neighbouring vortices at least forRv � ξ ) while for the d-wave
case the low-lying energy spectrum may be quantized only due to the finite intervortex distance
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(see [10–14]). The latter conclusion is proved by the numerical solution of the Bogoliubov–de
Gennes (BdG) equations [15] which shows that there are no truly localized states for a single
isolated vortex in a pure d-wave superconductor.

The simplest theoretical description of the excitation spectrum is based on the semiclassical
approach which takes account of the Doppler shift of the quasiparticle energy due to the local
superfluid velocityVs :

ε(k, r) = ±
√
h̄2V 2

F (k − kF )2 +12(k) + h̄k · Vs(r) (1)

whereVF is the Fermi velocity. Hereafter we assume the Fermi surface to be two dimensional,
which is appropriate to high-Tc superconductors, and take the gap function in the form
1d = 10kxky/k

2
F (the x-axis is taken along the [110] crystal direction and thus makes an

angleπ/4 with thea-axis of the CuO2 planes). We restrict ourselves to the study of a vortex
lattice under a magnetic field applied parallel to thec-axis and, as a consequence, the vector
Vs is a periodic function ofx, y with the periodicity of the vortex lattice. One can separate two
length scales for quasiparticle wave functions: an atomic length scalek−1

F and a characteristic
wavelength with a slowly varying envelope,l. The semiclassical procedure is in general
correct when the order parameter and superfluid velocity are modulated on a scale3� l. For
s-wave superconductors we havel ∼ ξ (the minimum spatial extent of wave packets made
with excitations (1)) and, as a result, the semiclassical approach fails only for the vortex core
region. For d-wave systems thel-value appears to be angle dependent. In the homogeneous
case the spectrum for the low-lying excitations which are close to one of the gap nodes (which
corresponds, e.g., to the pointk = (kF , 0)) has the form

ε(k) ' ±10

√
ξ2(k − kf )2 + k2

y/k
2
F (2)

whereξ = h̄VF /10. The typical momenta in thex-direction areqx ∼ ε/(10ξ) and the
corresponding wavelength is of the orderlx ∼ 10ξ/ε. Comparing thelx-value with the
intervortex distanceRv (the characteristic length of the superfluid velocity variation), one
can expect the semiclassical approach based on the expression (1) to fail for low energies
ε . 10ξ/Rv. In this case we may assume that the effective potential ¯hk · Vs(r) in
equation (1) should be averaged over the distances∼lx in the x-direction (the validity of
these qualitative arguments will be proved below). To analyse the problem beyond the
semiclassical approach one must use the more powerful methods based on either the BdG
equations or Green’s-function techniques (which are equivalent for clean superconductors).
The quasiclassical limit (kF ξ � 1) of these theories is known to be represented by the
Andreev and Eilenberger equations, respectively. Within these models one should solve the
one-dimensional quantum mechanical problem for the particle motion along the quasiclassical
trajectory which is characterized by the impact parameterb = µ/kF and the angleθ in the
x–y plane [3, 10–13, 16, 17]. Using the Bohr–Sommerfeld quantization rule for the angular
momentumµ(θ, ε) one can in principle determine the true quantum levels (see [10–13]).
For the d-wave case the main difficulty is connected with the description of quasiclassical
trajectories which make an angleθ < ξ/Rv with the gap node directions. For this angular
domain the extension of the wave function exceeds theRv-value and quasiparticle states are
sensitive to the superfluid velocity fields of all vortices even if the impact parameter is less
thanRv. The correct description of these trajectories with smallθ -values is of considerable
importance since it is this angular interval which determines the true quantum levels according
to the Bohr–Sommerfeld quantization rule. The above conclusion concerning the essential
influence of theVs-field on the low-energy spectrum is also consistent with the qualitative
arguments discussed in [18].
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It is the purpose of this paper to report on a calculation of the quantized energy spectrum
and quasiparticle eigenfunctions for various vortex lattice structures, based on an approximate
analytical solution of the BdG equations for low-lying excitations withε . 10ξ/Rv. Our
approach provides the possibility of taking proper account of the influence of the superfluid
velocity fields of all vortices in the vortex lattice on the quasiparticle motion along the
trajectories almost parallel to gap node directions.

2. Basic equations

The BdG equations for spin-singlet unconventional superconductors can be written as

ĥ0u(r) +
∫
1(r, r′)v(r′) dr′ = εu(r) (3)

−ĥ∗0v(r) +
∫
1∗(r, r′)u(r′) dr′ = εv(r) (4)

whereu, v are the particlelike and holelike parts of the quasiparticle wave function. The
one-particle Hamiltonian̂h0 in the simplest isotropic case takes the form

ĥ0 = − h̄2

2M

(
∇ + i

π

φ0
A

)2

− EF
whereφ0 is the flux quantum,EF is the Fermi energy, andM is the electron effective mass.
The system (3), (4) has been previously solved numerically for specific lattice models [19,20]
and in the continuum limit [15,21]. To obtain the analytical solution we follow a well known
procedure (see, e.g., [14,22]) and simplify the nonlocal off-diagonal terms using the condition
kF ξ � 1 (or, equivalently,10� EF ). In this case one can search for the solution in the form

u = U exp(ikF · r) v = V exp(ikF · r)
i.e. divide out the fast oscillations on a scalek−1

F . Then we rewrite1(r, r′) in terms of the
centre of massR = (r + r′)/2 and relative coordinatesρ = r − r′ and introduce the gap
function as a Fourier transform with respect toρ:

1(k,R) = 1d(k)9(R).

Note that we consider the case of pure d-wave superconductivity and neglect the effects
connected with the possible formation of states of mixed symmetry (with coexisting s- and
d-wave or dx2−y2 and dxy order parameter components). The function9(R) = f exp(iχ)
is the d-wave order parameter used in Ginzburg–Landau theory. Let us take the two-term
expansion for the gap operator:∫

1(r, r′)v(r′) dr′ ' eikF ·r
(
91d(kF )V − i

2

∂1d

∂k

∣∣∣∣
kF

{∇, 9}V
)

(5)

where we use the notation{Â, B̂} for the anti-commutator of two operatorsÂ andB̂. In order to
obtain the Andreev equations we should keep only the first term in this expression. Obviously
such an approximation is not correct, and the second term cannot be omitted whenkF is close
to the gap nodes and the first term vanishes. Taking, e.g.,kF1 = (kF , 0) and introducing a new
two-component wave function̂g = (U exp(−iχ), V ) (to eliminate the order parameter phase
in 9) one obtains the equations linearized in gradient terms:

−ξ σ̂z
(

i
∂

∂x
+
πAx

φ0

)
ĝ − σ̂x

2kF

{
i
∂

∂y
+
πAy

φ0
, f

}
ĝ

+
Mξ

h̄
Vsx(1 + σ̂z)ĝ +

Mf

h̄kF
Vsyσ̂x ĝ = ε

10
ĝ. (6)
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Hereσ̂x, σ̂y, σ̂z are the Pauli matrices,Vsx andVsy are the components of the superfluid
velocity Vs = Vsxx0 + Vsyy0, andx0, y0, z0 are the unit vectors of the coordinate system.
We follow here the treatment in [14] and neglect the curvature of the Fermi surface. For an
isotropic Fermi surface such an approximation is valid only forε � 10/(kF ξ) (see [23,24]).
However, as mentioned in [14,24], the range of validity of equation (6) may be even larger if
the Fermi surface is somewhat flattened at the nodes.

3. Quantization of the quasiparticle spectrum in vortex lattices

At intermediate magnetic fieldsHc1 � H � Hc2 (when the intervortex distance is much
smaller than the London penetration depth) we can assumeH = −Hz0 to be homogeneous
and take the gaugeA = Hyx0. If we neglect the terms proportional toVs and the suppression of
the order parameter in vortex cores (i.e. assumef = 1), then equation (6) can be solved exactly
in terms of harmonic oscillator eigenfunctions. The energy spectrum has the form [14,18]:

εN = ±
√

210h̄ωcN

whereωc = eH/(Mc) is the cyclotron frequency andN is an integer. The latter expression,
however, does not provide an adequate description of the low-energy spectrum, since the
periodic potential associated with a nonzero superfluid velocity cannot be considered as a
small perturbation [18]. For a vortex lattice with primitive translationsa1,a2 the superfluid
velocity may be written in the form

Vs = iπh̄H

Mφ0

∑
b 6=0

[b, z0]

|b|2 eib·r (7)

where [b, z0] is the vector product of the vectorsb and z0, and b = nb1 + mb2, where
b1 = 2πH [a2, z0]/φ0 and b2 = 2πH [z0,a1]/φ0 are the primitive translations in the
reciprocal lattice;n andm run over all possible integers. As we see below, the solution
of equation (6) depends strongly on the flux-lattice structure and its orientation relative to the
crystal axes. Contrary to the case for the conventional isotropic superconductors (where a
hexagonal flux lattice appears to be energetically favourable), for d-wave compounds previous
theoretical work predicted a rich phase diagram, containing triangular, centred rectangular, and
square lattices with various orientations relative to the ionic lattice, as a function of magnetic
field and temperature [25–30]. In principle one should treat the problem self-consistently,
i.e. calculate first the energy spectra for various vortex configurations and then find the lattice
structure corresponding to the free-energy minimum.

In this paper we do not solve this self-consistent problem, and restrict ourselves to the study
of energy spectra for several particular lattice structures. Let us choose one of the primitive
translations (e.g.a1) to be parallel to the gap node directionx0, and consider two types of
lattice: (I) a1 = ax0, a2 = σay0, Hσa2 = φ0 (the rectangular lattice); (II)a1 = ax0,
a2 = a(x0/2− σy0), Hσa2 = φ0 (vortices in the unit cell form the shape of an isosceles
triangle with the base along thex-axis). Note that the centred rectangular lattices of the type II
(with the parameterσ gradually changing as a function of theH - andT -values) were found to
be energetically favourable for a certain region of theH–T phase diagram within a generalized
London model taking account of nonlocal and nonlinear corrections to the free energy [25,26].
We also include in our consideration the square lattice tilted byπ/4 from thea-axis (type I,
σ = 1) which is the most stable, at least for rather high fields and temperatures not very close
to Tc according to [27–30]. Such a lattice structure (though elongated in thea-direction) is
close to the one observed experimentally in twinned YBaCuO monocrystals by small-angle
neutron scattering [31] and scanning tunnelling microscopy [9].
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If we search for the solution of equation (6) as a linear combination of harmonics
eiqxxĜ(qx, y), the periodic functionsf and Vs will be responsible for the interaction of
the harmonics withqx and qx + nb1x . As we see below, forε < 0.5π10ξ/a the wave
functionsĜ(qx, y) andĜ(qx + nb1x, y) do not overlap in they-direction and, consequently,
their interaction is negligible. In this case the momentum componentqx is a good quantum
number and one can replace the exact periodic potential (7) in equation (6) with the effective
potential averaged in thex-direction. The equation for̂G(qx, y) reads

ξ σ̂z

(
qx − πHy

φ0

)
Ĝ− i

kF
σ̂x
∂Ĝ

∂y
+
πξσ

2Ry
8

(
y

Ry

)
(1 + σ̂z)Ĝ = ε

10
Ĝ (8)

where8(z) = 2z− (2m + 1) for m < z < m + 1,m is an integer, andRy (Rx) is the distance
between the lines parallel to thex- (y-) axis and passing through the vortex centres. For type
I (II) lattices we haveRx = a, Ry = σa (Rx = a/2,Ry = σa). We omitted here the small
corrections of the orderξ/a, which are connected with the suppression of the order parameter
f in vortex cores. It is convenient to introducêF = (σ̂x + σ̂z)Ĝ/2 and the dimensionless
valuesz = y/Ry ,Q = qxRy/(πσ), E = ε/ε∗y , whereε∗y = π10ξσ/Ry . At themth interval

(m < z < m + 1) the equation for̂F reads

−iλσ̂z
∂F̂

∂z
+

(
1

2
8(z)− E

)
F̂ + qmσ̂xF̂ = 0 (9)

whereqm = Q − m − 1/2 andλ = (πσkF ξ)
−1 is a dimensionless wavelength. A pro-

cedure analogous to the one described above can be carried out for the gap node at the point
k2 = (0, kF ). Taking the gaugeA = −Hxy0 and introducing

ĝ = eiqyy(σ̂x + σ̂z)F̂
∗ z = −x/Rx qy = πQHRx/φ0

ε = Eε∗x ε∗x = π10ξHRx/φ0 λ−1 = πkF ξHR2
x/φ0

one obtains equation (9). Due to the symmetry of the BdG equations, the solutionsU3,4, V3,4,
ε3,4 for two other gap nodes at the pointsk3 = (−kF , 0) andk4 = (0,−kF ) can be found by
using the simple transformationU3,4→ V ∗1,2, V3,4→−U ∗1,2, ε3,4→−ε1,2.

The important point is that a set of eigenvalues corresponding to a certain momentumQ

coincides with that for the momentumQ + 1. Such a periodicity of the energy spectrum is a
consequence of the periodicity of the potential8(z), as can be proved exactly from equation (9).
Thus, to analyse the spectrum one can consider just theQ-values in the 1D Brillouin zone
−1/2 < Q < 1/2. It may be useful to note that inside themth interval the equations (9) are
equivalent to the ones describing the interband tunnelling [32] or the one-dimensional (1D)
motion of a Dirac particle in a uniform electric field, and can be solved exactly:

F̂ =
(

c1D−iµ−1(τ ) + c2D−iµ−1(−τ)

sgn(Q−m− 1/2)
√

i/µ(−c1D−iµ(τ) + c2D−iµ(−τ))

)
(10)

Here

τ = 2

iλ
(z−m− 1/2− E) µ = q2

m/(2λ)

andD−iµ−1(τ ) andD−iµ(τ) are the parabolic cylinder functions [33]. To obtain the energy
spectrum one should match these solutions at pointsz = m and obtain the system of two
equations forc1 andc2. The solvability condition for this system results in the quantization
rule. This procedure may be substantially simplified using the usual 1D quasiclassical approach
which is valid forλ � 1. This condition is easily met for rather largekF ξ -values, if theσ -
parameter is not extremely large or small. Here we summarize the most important properties
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of quasiclassical wave functions and energy spectrum, which are discussed in more detail in
appendix A. The quasiparticle wave functions are localized in classically allowed (CA) regions
which shift in thez-direction with a change in theQ-value. The discontinuities in8(z) at
z = m play the role of potential walls, and for rather low energies (|E| < 1/2) the dimensionδz
of each CA region does not exceed the distance between these walls (i.e.δz < 1). The classical
motion at themth interval is allowed provided that the condition|Q−m− 1/2| < 1/2 + |E|
is fulfilled. Inside this interval a linear increase in the8(z) potential results in the appearance
of two turning points (z1m = m + 1/2 +E − |qm| andz2m = m + 1/2 +E + |qm|). As a
consequence, classical quasiparticles are locked in the following intervals: (i)m < z < z1m

(region A); (ii) z2m < z < m + 1 (region B). Using the Bohr–Sommerfeld quantization rule
one obtains two sets of energy branches:EA(NA,Q,m) andEB(NB,Q,m) (see (A.5)).

Q

E

Figure 1. The energy branches in the first Brillouin zone forλ = 0.01.

In figure 1 we display these energy branches in the first Brillouin zone for the particular case
of λ = 0.01. Near the points of intersection of the energy branches (A.5) in theE–Q plane one
should take account of the splitting of energy levels, resulting from the quasiparticle tunnelling
through classically forbidden regions. As a result, we obtain a set of narrow bands separated
by energy gaps. The effect of tunnelling (and, therefore, energy splitting) is exponentially
small, if the characteristic length of the wave-function decay in a classically forbidden region
is much smaller than the dimension of this region. In the opposite case the effect of tunnelling
is fundamental. In particular, we cannot neglect the tunnelling between the regions A and B for
Q close to the Brillouin-zone boundaries, when the distance between the turning pointsz1m and
z2m becomes comparable to the characteristic decay length

√
λ in the regionz1m < z < z2m.

To analyse this limit we start from the exact solution (10) and replace the parabolic cylinder
functions by the corresponding asymptotic expressions which are valid far from the turning
points. Thus, if the turning pointsz1m andz2m are not too close to them-interval boundaries
(z1m−m� |qm|,m+1−z2m � |qm|) and the distancez2m−z1m is rather small (|qm| �

√
λ),

the quantization rule takes the following form:

E ' E0N +
√
πλqm(−1)N sin

(
β +

E2
0N

4λ
− q

2
m

2λ
ln
(1/4− E2

0N)

λ

)
(11)

where

E0N = πNλ + λ(αA − αB)/2

β = π

4
+

1

4λ
− αA + αB

2
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whereN ∈ Z. The spectrum appears to be equidistant only at the Brillouin-zone boundaries
(Q = ±1/2) and the distance between the energy levels depends strongly on the vortex lattice
geometry.

One can see that for rather low energies (|E| < 1/2) the CA regions corresponding
to the valuesQ andQ + 2n do not overlap. In this case the interaction of the harmonics
with qx andqx + nb1x will be exponentially small due to the exponential decay of the wave
function in classically forbidden regions. For|E| > 1/2 the dimension of the CA region may
exceed the intervortex distance, and the interaction of the overlapping harmonicsĜ(qx, y)

andĜ(qx + nb1x, y) cannot be neglected. Thus, our procedure based on the averaging of the
superfluid velocity in thex-direction is correct only for low energies|E| < 1/2, when the
solutions are essentially localized in they-direction on a scale determined by the intervortex
distance. Using the solution of equation (9) given above, we obtain four sets of eigenfunctions
and eigenvalues associated with four gap nodes. The range of validity of our approach is
restricted by the conditionε < 0.5 min[ε∗x, ε

∗
y ], whereε∗x ∼ 10ξ/Rx andε∗y ∼ 10ξ/Ry .

4. The density of states

The quantization of the low-energy spectrum should result in oscillatory behaviour of the DOS
as a function of energy with the characteristic energy scales of orders given by

δε1 ∼ 10

√
h̄ωc/(σEF )

δε2 ∼ 10

√
h̄ωcσ/EF

and, therefore, we unfortunately cannot explain a peak with a large energy gap.10 observed
experimentally at the vortex centres in YBaCuO [9]. The simplest way to analyse the local
DOSN(ε, x, y) in the low-energy regime is to neglect the oscillations and assumeNA,B to be
a continuous variable (more detailed study is left as a future problem). In other words, for each
gap node we consider the generalization of the usual semiclassical approach (see, e.g., [3]),
taking account of the Doppler shift of the quasiparticle energy caused by theVs-field averaged
in the gap node direction. We sum up the contributions from four gap nodes and obtain

N = πHξNF

4φ0

(
Rxf

(
x

Rx
,
ε

ε∗x

)
+Ryf

(
y

Ry
,
ε

ε∗y

))
(12)

where

f (z, ε̃) = |8(z)/2− ε̃| + |8(z)/2 + ε̃|
whereNF is the density of states at the Fermi level in a normal state.

Contour plots of the function

ν = NN−1
F

√
32Hc2/(πH)

for the rectangular lattice withσ = 2 and for the hexagonal lattice withσ = √3/2 are
shown in figures 2 and 3, respectively. The peaks in the local DOS (ν = νmax) occur at the
pointsrmax = (nRx,mRy) (n,m are integers) of intersection of lines parallel to thex- and
y-axes and passing through the vortex centres. The interesting fact is that for type II lattices
these peaks do not only appear at vortex centres, while for rectangular lattices (type I) the
coordinates of all peaks coincide with the vortex positions. Forε = 0 the DOS vanishes at the
pointsrmin = rmax + (Rx/2, Ry/2). In the vicinity of each vortex centre (x̄, ȳ) the local DOS
exhibits a fourfold symmetry in analogy to the case of a single isolated vortex [16,17,21] and
decreases linearly with increase of the distances|x − x̄| and|y − ȳ| from the vortex centre (in
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  y′′                                   y′′

  0 0.5   1 1.5   2
0

1

2

3

4

 x′′         0 0.5   1 1.5   2
0

1

2

3

4

 x′′
          (a)                                   (b)

Figure 2. Contour plots of the normalized local DOSν(r = ar′) for the rectangular lattice
with σ = 2. Theν-value changes fromνmin (at the pointsr′min = r′max + (0.5, 1)) to νmax (at
r′max = (n, 2m)). (a)ε = 0, νmin = 0, νmax = 2.2. (b)ε = 0.2ε∗y , νmin = 1.1, νmax = 2.2.

    y′′                                  y′′

  0 0.2 0.4 0.6 0.8  1
  0

0.5

  1

1.5

  2

 x′′         0 0.2 0.4 0.6 0.8  1
  0

0.5

  1

1.5

  2

 x′′
            (a)                                  (b)

Figure 3. Contour plots of the normalized local DOSν(r = ar′) for the hexagonal lattice with
σ = 31/2/2. Theν-value changes fromνmin (at the pointsr′min = r′max + (0.25, σ/2)) to νmax (at
r′max = (n/2, σm)). (a)ε = 0, νmin = 0, νmax = 1.6. (b)ε = 0.2ε∗y , νmin = 0.7, νmax = 1.5.

contrast to the((x− x̄)2 + (y− ȳ)2)−1/2 divergence resulting from the semiclassical approach
based on equation (1)). The spatially averaged DOS has the form

〈N〉 = NF

8

√
πH

2Hc2
h(σ)

(
1 +

4ε2φ0Ry

π2ξ212
0HσRx

)
(13)

whereh(σ) = σ 1/2 + σ−1/2 (h(σ) = σ 1/2 + 0.5σ−1/2) for the type I (II) lattice. If we assume
the parameterσ to be field independent, then the magnetic field dependence of the residual
DOS (atε = 0) follows the square-root behaviour which was first predicted in [3]. Deviations
from this behaviour may appear if the vortex lattice structure and, hence, theσ -value change
with the magnetic field increase (see [25, 26, 28–30]) and, probably, they are relevant to the
interpretation of specific heat [6–8] and thermal conductivity [34,35] measurements for high-
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Tc compounds. Note that to make realistic predictions for experiments one should, certainly,
take account of the disorder effects [4,5].

5. Conclusions

In summary, we have described the distinctive features of the low-lying quasiparticle states
in the vortex lattices in d-wave systems. The periodic superfluid velocity field is shown to
induce the band structure in the low-energy part of the spectrum. This band structure and
corresponding eigenfunctions have been analysed for both rectangular and centred rectangular
flux lattices tilted byπ/4 from thea-axis. We also believe that our results will be qualitatively
valid for a larger class of flux lattices, including, probably, the ones observed experimentally in
twinned YBaCuO monocrystals [9,31]. Contrary to the case for s-wave superconductivity, the
spectrum quantization in d-wave systems is not connected with vortex core regions. For the
quasiparticle states associated with each gap node there exist two regimes with the crossover
parameterεRi/(10ξ) (i = x andi = y for the gap nodes atk2,4 andk1,3, respectively):

(a) for the low-energy regime the spectrum has a band structure, and the wave functions
are extended in the gap node direction and localized in the perpendicular one on a scale
determined by the intervortex distance;

(b) for the high-energy regime the spectrum is continuous, the eigenfunctions are extended
in both directions, and our approximate solution based on the averaging of the superfluid
velocity in the gap node direction is no longer valid.

The characteristic energyε of the excitations coming into play at finite temperatures is of
the order ofT and, consequently, for thermodynamic and transport quantities one can expect
different regimes with the crossover parametersT Rx/(10ξ), T Ry/(10ξ). Taking the case
where

Rx ∼ Ry ∼
√
φ0/H

we obtain the crossover parameter introduced previously in [10, 12, 23]. The resulting
peculiarities of the local DOS in the low-energy regime are shown to be strongly influenced by
the vortex lattice geometry. The unusual behaviour of the DOS discussed above can be probed
by specific heat and STM measurements, and could provide additional arguments in favour
of d-wave pairing in high-Tc superconductors. The present study provides a starting point for
the analysis of static and dynamic properties of the mixed state in various d-wave systems,
including, probably, high-Tc copper oxides. For this purpose the approach developed above
should be generalized to describe the quasiparticle states for arbitrary lattice orientations with
respect to the crystal axes.
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Appendix A

Following the usual quasiclassical procedure, we substituteF̂ ∝ exp(iS(z)) in equation (9) and
obtain the classically allowed (CA) regions (where the functionS is real): |8(z)/2−E| > |qm|.
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These regions shift in thez-direction with a change in theQ-value, and the quasiparticle motion
at themth interval is classically allowed only for|qm| < 1/2 + |E|. In the low-energy limit
|E| < 1/2, the CA regions at this interval cannot appear for|qm| > 1. Let us now consider the
domain|qm| < 1 and continue with the calculation of quasiclassical wave functions and energy
levels corresponding to the quasiparticle motion at themth interval which contains two CA
regions: (i)−1/2< z−m−1/2< E−|qm| (region A) and (ii)E+|qm| < z−m−1/2< 1/2
(region B). Note that the region A (B) exists if the turning pointz1m = m + 1/2 +E − |qm|
(z2m = m + 1/2 +E + |qm|) belongs to themth interval. The wave functions and quantization
rules for regions A and B can be written as follows:

F̂A,B = CA,B

(t2 − q2
m)

1/4

(
exp(iSA,B)

|t +
√
t2 − q2

m|1/2
( −qm
t +
√
t2 − q2

m

)
+

exp(−iSA,B)

|t −√t2 − q2
m|1/2

( −qm
t −√t2 − q2

m

))
(A.1)

SA,B = 1

λ

∫ t

∓|qm|

√
s2 − q2

m ds ± π
4

∫ 1/2±E

|qm|

√
t2 − q2

m dt = πλ(NA,B + γA,B(qm)) (A.2)

wheret = z−m− 1/2−E, andNA,B is an integer. TheγA,B-values are of the order of unity
and are determined by the matching of the expression (A.1) with the exponentially decaying
solutions in classically forbidden regions at the(m−1)th and(m+1)th intervals. This matching
procedure results in the following boundary conditions for the wave functionF̂ = (F1, F2):

F2

F1

∣∣∣∣
z=m
= exp(iαA) cosαA = E − 1/2

Q−m + 1/2
(A.3)

F2

F1

∣∣∣∣
z=m+1

= exp(iαB) cosαB = E + 1/2

Q−m− 3/2
. (A.4)

Evaluating the integral in the l.h.s. of equation (A.2), one obtains(
1

2
± EA,B

)√(
1

2
± EA,B

)2

− q2
m − q2

m cosh−1

( 1
2 ± EA,B

|qm|
)
= 2πλ(NA,B + γA,B). (A.5)

Near the first Brillouin-zone boundary|Q − 1/2| � 1/2 ± E, the spectrum has the
following simple form:

EA,B

∣∣∣
m=0
' ∓1

2
±
√

2πλ(NA,B + γA,B)± (Q− 1/2)2

2
√

2πλ(NA,B + γA,B)
ln

√
2πλ(NA,B + γA,B)

|Q− 1/2| .

(A.6)

Note added in proof. After submission of this paper I learned that M Franz and Z Tešanovíc [36] have obtained a
numerical solution describing the band spectrum for a square lattice (type II,σ = 0.5). For rather large anisotropy of
the spectrum (2), the numerical solution [36] appears to be in good agreement with our analytical results.
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